
NAG Fortran Library Routine Document

F04YCF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

1 Purpose

F04YCF estimates the 1-norm of a real matrix without accessing the matrix explicitly. It uses reverse
communication for evaluating matrix-vector products. The routine may be used for estimating matrix
condition numbers.

2 Specification

SUBROUTINE F04YCF (ICASE, N, X, ESTNRM, WORK, IWORK, IFAIL)

INTEGER ICASE, N, IWORK(N), IFAIL
double precision X(N), ESTNRM, WORK(N)

3 Description

F04YCF computes an estimate (a lower bound) for the 1-norm

Ak k1 ¼ max
1�j�n

Xn
i¼1

aij
�� �� ð1Þ

of an n by n real matrix A ¼ aij
� �

. The routine regards the matrix A as being defined by a user-supplied

‘Black Box’ which, given an input vector x, can return either of the matrix-vector products Ax or ATx. A
reverse communication interface is used; thus control is returned to the calling program whenever a matrix-
vector product is required.

Note: this routine is not recommended for use when the elements of A are known explicitly; it is then
more efficient to compute the 1-norm directly from formula (1) above.

The main use of the routine is for estimating B�1
�� ��

1
, and hence the condition number

�1 Bð Þ ¼ Bk k1 B�1
�� ��

1
, without forming B�1 explicitly (A ¼ B�1 above).

If, for example, an LU factorization of B is available, the matrix-vector products B�1x and B�Tx required

by F04YCF may be computed by back- and forward-substitutions, without computing B�1.

The routine can also be used to estimate 1-norms of matrix products such as A�1B and ABC, without
forming the products explicitly. Further applications are described by Higham (1988).

Since Ak k1 ¼ AT
�� ��

1
, F04YCF can be used to estimate the 1-norm of A by working with AT instead of

A.

The algorithm used is based on a method given by Hager (1984) and is described by Higham (1988). A
comparison of several techniques for condition number estimation is given by Higham (1987).

4 References

Hager W W (1984) Condition estimates SIAM J. Sci. Statist. Comput. 5 311–316

Higham N J (1987) A survey of condition number estimation for triangular matrices SIAM Rev. 29
575–596

Higham N J (1988) FORTRAN codes for estimating the one-norm of a real or complex matrix, with
applications to condition estimation ACM Trans. Math. Software 14 381–396
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5 Parameters

Note: this routine uses reverse communication. Its use involves an initial entry, intermediate exits and re-
entries, and a final exit, as indicated by the parameter ICASE. Between intermediate exits and re-entries,
all parameters other than X must remain unchanged.

1: ICASE – INTEGER Input/Output

On initial entry: must be set to 0.

On intermediate exit: ICASE ¼ 1 or 2, and XðiÞ, for i ¼ 1; 2; . . . ; n, contain the elements of a vector
x. The calling program must

(a) evaluate Ax (if ICASE ¼ 1) or ATx (if ICASE ¼ 2),

(b) place the result in X, and

(c) call F04YCF once again, with all the other parameters unchanged.

On final exit: ICASE ¼ 0.

2: N – INTEGER Input

On initial entry: n, the order of the matrix A.

Constraint: N � 1.

3: XðNÞ – double precision array Input/Output

On initial entry: need not be set.

On intermediate exit: contains the current vector x.

On intermediate re-entry: must contain Ax (if ICASE ¼ 1) or ATx (if ICASE ¼ 2).

On final exit: the array is undefined.

4: ESTNRM – double precision Input/Output

On initial entry: need not be set.

On intermediate exit: should not be changed.

On final exit: an estimate (a lower bound) for Ak k1.

5: WORKðNÞ – double precision array Input/Output

On initial entry: need not be set.

On final exit: contains a vector v such that v ¼ Aw where ESTNRM ¼ vk k1= wk k1 (w is not

returned). If A ¼ B�1 and ESTNRM is large, then v is an approximate null vector for B.

6: IWORKðNÞ – INTEGER array Communication Array

7: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this parameter you should
refer to Chapter P01 for details.

On exit: IFAIL ¼ 0 unless the routine detects an error (see Section 6).

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this parameter the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N < 1.

7 Accuracy

In extensive tests on random matrices of size up to n ¼ 100 the estimate ESTNRM has been found always
to be within a factor eleven of Ak k1; often the estimate has many correct figures. However, matrices exist
for which the estimate is smaller than Ak k1 by an arbitrary factor; such matrices are very unlikely to arise
in practice. See Higham (1988) for further details.

8 Further Comments

8.1 Timing

The total time taken within F04YCF is proportional to n. For most problems the time taken during calls to
F04YCF will be negligible compared with the time spent evaluating matrix-vector products between calls
to F04YCF.

The number of matrix-vector products required varies from 4 to 11 (or is 1 if n ¼ 1). In most cases 4 or 5
products are required; it is rare for more than 7 to be needed.

8.2 Overflow

It is your responsibility to guard against potential overflows during evaluation of the matrix-vector

products. In particular, when estimating B�1
�� ��

1
using a triangular factorization of B, F04YCF should not

be called if one of the factors is exactly singular – otherwise division by zero may occur in the
substitutions.

8.3 Use in Conjunction with NAG Fortran Library Routines

To estimate the 1-norm of the inverse of a matrix A, the following skeleton code can normally be used:

... code to factorize A ...
IF (A is not singular) THEN

ICASE = 0
10 CALL F04YCF (ICASE,N,X,ESTNRM,WORK,IWORK,IFAIL)

IF (ICASE.NE.0) THEN
IF (ICASE.EQ.1) THEN

... code to compute inv(A)*x ...
ELSE

... code to compute inv(transpose(A))*x ...
END IF
GO TO 10

END IF
END IF

To compute A�1x or A�Tx, solve the equation Ay ¼ x or ATy ¼ x for y, overwriting y on x. The code will
vary, depending on the type of the matrix A, and the NAG routine used to factorize A.

Note that if A is any type of symmetric matrix, then A ¼ AT, and the code following the call of F04YCF
can be reduced to:

IF (ICASE.NE.0) THEN
... code to compute inv(A)*x ...
GO TO 10

END IF
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The factorization will normally have been performed by a suitable routine from Chapters F01, F03 or F07.
Note also that many of the ‘Black Box’ routines in Chapter F04 for solving systems of equations also
return a factorization of the matrix. The example program in Section 9 illustrates how F04YCF can be
used in conjunction with NAG Library routines for two important types of matrix: full non-symmetric
matrices (factorized by F03AFF) and sparse non-symmetric matrices (factorized by F01BRF).

It is straightforward to use F04YCF for the following other types of matrix, using the named routines for
factorization and solution:

non-symmetric tridiagonal (F01LEF and F04LEF);
non-symmetric almost block-diagonal (F01LHF and F04LHF);
non-symmetric band (F07BDF (DGBTRF) and F07BEF (DGBTRS));
symmetric positive-definite (F03AEF and F04AGF, or F07FDF (DPOTRF) and F07FEF
(DPOTRS));
symmetric positive-definite band (F07HDF (DPBTRF) and F07HEF (DPBTRS));
symmetric positive-definite tridiagonal (F07JAF (DPTSV), F07JDF (DPTTRF) and F07JEF
(DPTTRS));
symmetric positive-definite variable bandwidth (F01MCF and F04MCF);
symmetric positive-definite sparse (F11JAF and F11JBF);
symmetric indefinite (F07PDF (DSPTRF) and F07PEF (DSPTRS)).

For upper or lower triangular matrices, no factorization routine is needed: A�1x and A�Tx may be
computed by calls to F06PJF (DTRSV) (or F06PKF (DTBSV) if the matrix is banded, or F06PLF
(DTPSV) if the matrix is stored in packed form).

9 Example

For this routine two examples are presented. There is a single example program for F04YCF, with a main
program and the code to solve the two example problems is given in the (sub)programs EX1 and EX2.

Example 1 (EX1)

To estimate the condition number Ak k1 A�1
�� ��

1
of the matrix A given by

A ¼

1:5 2:0 3:0 �2:1 0:3
2:5 3:0 �4:0 2:3 �1:1
3:5 4:0 0:5 �3:1 �1:4

�0:4 �3:2 �2:1 3:1 2:1
1:7 3:7 1:9 �2:2 �3:3

0
BBBB@

1
CCCCA
.

The code to compute A�1x and A�Tx is more complicated than might be expected because there is no

single routine to solve ATy ¼ x for y in this case. Instead we make use of the fact that A is factorized by
F03AFF as PA ¼ LU , where P is a permutation matrix, L is lower triangular and U is upper triangular.
Since the permutation matrix does not affect the 1-norm (i.e., PAk k1 ¼ Ak k1), it is sufficient to solve

LUy ¼ x and LUð ÞTy ¼ UTLTy ¼ x for y, using calls to F06PJF (DTRSV).

Example 2 (EX2)

To estimate the condition number Ak k1 A�1
�� ��

1
of the matrix A given by

A ¼

5:0 0:0 0:0 0:0 0:0 0:0
0:0 0:0 �1:0 2:0 0:0 0:0
0:0 2:0 3:0 0:0 0:0 0:0

�2:0 0:0 0:0 1:0 1:0 0:0
�1:0 0:0 0:0 �1:0 2:0 �3:0
�1:0 �1:0 0:0 0:0 0:0 6:0

0
BBBBBB@

1
CCCCCCA
.
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9.1 Program Text

* F04YCF Example Program Text
* Mark 20 Revised. NAG Copyright 2001.
* .. Parameters ..

INTEGER NOUT
PARAMETER (NOUT=6)

* .. External Subroutines ..
EXTERNAL EX1, EX2

* .. Executable Statements ..
WRITE (NOUT,*) ’F04YCF Example Program Results’
CALL EX1
CALL EX2
STOP
END

*
SUBROUTINE EX1

* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER (NIN=5,NOUT=6)
INTEGER NMAX, LDA
PARAMETER (NMAX=20,LDA=NMAX)
DOUBLE PRECISION ZERO
PARAMETER (ZERO=0.0D+0)

* .. Local Scalars ..
DOUBLE PRECISION ANORM, COND, D1, EPS, ESTNRM
INTEGER I, ICASE, ID, IFAIL, J, N

* .. Local Arrays ..
DOUBLE PRECISION A(LDA,NMAX), P(NMAX), WORK(NMAX), X(NMAX)
INTEGER IWORK(NMAX)

* .. External Functions ..
DOUBLE PRECISION DASUM, X02AJF
EXTERNAL DASUM, X02AJF

* .. External Subroutines ..
EXTERNAL DTRSV, F03AFF, F04YCF

* .. Intrinsic Functions ..
INTRINSIC MAX

* .. Executable Statements ..
WRITE (NOUT,*)
WRITE (NOUT,*)
WRITE (NOUT,*) ’Example 1’

* Skip heading in data file
READ (NIN,*)
READ (NIN,*)
READ (NIN,*)
READ (NIN,*) N
WRITE (NOUT,*)
IF (N.GT.NMAX) THEN

WRITE (NOUT,99999) ’N is out of range: N =’, N, ’.’
ELSE

READ (NIN,*) ((A(I,J),J=1,N),I=1,N)
* First compute the norm of A. DASUM returns the sum of the
* absolute values of a column of A.

ANORM = ZERO
DO 20 J = 1, N

ANORM = MAX(ANORM,DASUM(N,A(1,J),1))
20 CONTINUE

WRITE (NOUT,99998) ’Computed norm of A =’, ANORM
* Next estimate the norm of inverse(A). We do not form the
* inverse explicitly.

EPS = X02AJF()
IFAIL = 0

*
* Factorise A as P*A = L*U using F03AFF.

CALL F03AFF(N,EPS,A,LDA,D1,ID,P,IFAIL)
ICASE = 0

*
40 CALL F04YCF(ICASE,N,X,ESTNRM,WORK,IWORK,IFAIL)

*
IF (ICASE.NE.0) THEN

IF (ICASE.EQ.1) THEN
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* Return the vector inv(P*A)*X by solving the equations
* L*U*Y = X, overwriting Y on X. First solve L*Z = X for Z.

CALL DTRSV(’Lower’,’No Transpose’,’Non-Unit’,N,A,LDA,X,1)
* Then solve U*Y = Z for Y.

CALL DTRSV(’Upper’,’No Transpose’,’Unit’,N,A,LDA,X,1)
ELSE IF (ICASE.EQ.2) THEN

* Return the vector inv(P*A)’*X by solving U’*L’*Y = X,
* overwriting Y on X. First solve U’*Z = X for Z.

CALL DTRSV(’Upper’,’Transpose’,’Unit’,N,A,LDA,X,1)
* Then solve L’*Y = Z for Y.

CALL DTRSV(’Lower’,’Transpose’,’Non-Unit’,N,A,LDA,X,1)
END IF

* Continue until ICASE is returned as 0.
GO TO 40

ELSE
WRITE (NOUT,99998) ’Estimated norm of inverse(A) =’, ESTNRM

END IF
COND = ANORM*ESTNRM
WRITE (NOUT,99997) ’Estimated condition number of A =’, COND
WRITE (NOUT,*)

END IF
*
99999 FORMAT (1X,A,I5,A)
99998 FORMAT (1X,A,F8.4)
99997 FORMAT (1X,A,F5.1)

END
*

SUBROUTINE EX2
* .. Parameters ..

INTEGER NIN, NOUT
PARAMETER (NIN=5,NOUT=6)
INTEGER NMAX, NZMAX, LICN, LIRN
PARAMETER (NMAX=20,NZMAX=25,LICN=4*NZMAX,LIRN=2*NZMAX)
DOUBLE PRECISION TENTH, ZERO
PARAMETER (TENTH=0.1D+0,ZERO=0.0D+0)

* .. Local Scalars ..
DOUBLE PRECISION ANORM, COND, ESTNRM, RESID, SUM, U
INTEGER I, ICASE, IFAIL, J, N, NZ
LOGICAL GROW, LBLOCK

* .. Local Arrays ..
DOUBLE PRECISION A(LICN), W(NMAX), WORK1(NMAX), X(NMAX)
INTEGER ICN(LICN), IDISP(10), IKEEP(5*NMAX), IRN(LIRN),

+ IW(8*NMAX), IWORK(NMAX)
LOGICAL ABORT(4)

* .. External Subroutines ..
EXTERNAL F01BRF, F04AXF, F04YCF

* .. Intrinsic Functions ..
INTRINSIC ABS, MAX

* .. Executable Statements ..
WRITE (NOUT,*)
WRITE (NOUT,*)
WRITE (NOUT,*) ’Example 2’

* Skip heading in data file
READ (NIN,*)
READ (NIN,*)

* Input N, the order of matrix A, and NZ, the number of non-zero
* elements of A.

READ (NIN,*) N, NZ
WRITE (NOUT,*)
IF (N.GT.NMAX .OR. NZ.GT.NZMAX) THEN

WRITE (NOUT,99999) ’N or NZ is out of range: N =’, N,
+ ’, NZ =’, NZ, ’.’
ELSE

* Input the elements of A, along with row and column information.
READ (NIN,*) (A(I),IRN(I),ICN(I),I=1,NZ)

* First compute the norm of A.
ANORM = 0
DO 40 I = 1, N

SUM = ZERO
DO 20 J = 1, NZ

IF (ICN(J).EQ.I) SUM = SUM + ABS(A(J))
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20 CONTINUE
ANORM = MAX(ANORM,SUM)

40 CONTINUE
WRITE (NOUT,99998) ’Computed norm of A =’, ANORM

* Next estimate the norm of inverse(A). We do not form the
* inverse explicitly.
* Factorise A into L*U using F01BRF.

U = TENTH
LBLOCK = .TRUE.
GROW = .TRUE.
ABORT(1) = .TRUE.
ABORT(2) = .TRUE.
ABORT(3) = .FALSE.
ABORT(4) = .TRUE.
IFAIL = 110

*
CALL F01BRF(N,NZ,A,LICN,IRN,LIRN,ICN,U,IKEEP,IW,W,LBLOCK,GROW,

+ ABORT,IDISP,IFAIL)
ICASE = 0

*
60 CALL F04YCF(ICASE,N,X,ESTNRM,WORK1,IWORK,IFAIL)

*
IF (ICASE.NE.0) THEN

* Return X := inv(A)*X or X = inv(A)’*X, depending on the
* value of ICASE, by solving A*Y = X or A’*Y = X,
* overwriting Y on X.

CALL F04AXF(N,A,LICN,ICN,IKEEP,X,W,ICASE,IDISP,RESID)
* Continue until ICASE is returned as 0.

GO TO 60
ELSE

WRITE (NOUT,99998) ’Estimated norm of inverse(A) =’, ESTNRM
END IF
COND = ANORM*ESTNRM
WRITE (NOUT,99997) ’Estimated condition number of A =’, COND

END IF
*
99999 FORMAT (1X,A,I5,A,I5,A)
99998 FORMAT (1X,A,F8.4)
99997 FORMAT (1X,A,F5.1)

END

9.2 Program Data

F04YCF Example Program Data

Example 1
5 :Value of N

1.5 2.0 3.0 -2.1 0.3
2.5 3.0 -4.0 2.3 -1.1
3.5 4.0 0.5 -3.1 -1.4

-0.4 -3.2 -2.1 3.1 2.1
1.7 3.7 1.9 -2.2 -3.3 :End of matrix A

Example 2
6 15 :Values of N and NZ

5.0 1 1 2.0 2 2 -1.0 2 3 2.0 2 4 3.0 3 3
-2.0 4 1 1.0 4 4 1.0 4 5 -1.0 5 1 -1.0 5 4
2.0 5 5 -3.0 5 6 -1.0 6 1 -1.0 6 2 6.0 6 6 :End of matrix A
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9.3 Program Results

F04YCF Example Program Results

Example 1

Computed norm of A = 15.9000
Estimated norm of inverse(A) = 1.7635
Estimated condition number of A = 28.0

Example 2

Computed norm of A = 9.0000
Estimated norm of inverse(A) = 1.9333
Estimated condition number of A = 17.4
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